
Journal of Statistical Physics, Vol. 78, Nos. 5/6, 1995 

Classical Motion in Two-Dimensional Crystals 
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The classical motion of an electron of high enough energy in a two-dimensional 
crystal is diffusive for many potentials with Coulomb singularities. A simple 
model of the dynamics is developed which predicts the dependence of the 
diffusion constant D on the particle energy E in the high-energy limit: D(E) 
const-E 3/2. This diffusion law is checked for a concrete crystal by numerically 
integrating the Hamilton equations for an ensemble of initial conditions. Finally 
this method is compared with other models of the classical dynamics in a 
crystal, especially the Sinai billiard. 

KEY W O R D S :  Two-dimensional diffusion; Jacobi metric; geodesic flow; 
negative curvature; Anosov; mean free path length; Sinai billiard. 

1. INTRODUCTION 

F o r  many  two-dimensional  per iodic  potent ials  which are asymptot ica l ly  
negative Coulombic  near  the singularit ies and smooth  elsewhere, Knauf  Is) 
showed the diffusivity of the mot ion  of a classical electron. Diffusion takes 
place for energies E exceeding a positive threshold h. In the mean a fast 
particle depar ts  farther than a slower one. The diffusion constant  D = D ( E )  
increases with the energy E. But how does D depend on the energy E?  The 
model  in t roduced in Section 5 yields the result D ( E ) ~ c o n s t . E  3/2 as 
E / '  or. A crucial role in the der ivat ion is played by the mean free path  
length g, which is the mean pa th  length between two consecutive distinct 
changes of the direct ion of the electron. I demand  a "dist inct  change" 
because a f ree-path  needs not  be a straight  path.  In fact this is why the 
mot ion  is diffusive (see Section 6). 

One might  at first be tempted to expect the Lorentz  gas (Sinai bi l l iard)  
with infinite hor izon to describe the dynamics  for high energies, but  the 
Lorentz  gas of infinite hor izon is not  diffusive. Trajectories  calculated by 
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the computer show clearly that a path of an electron does not look like the 
path of a billiard ball, but is curved, even in the case of high energy. 

The polynomial dependence of the diffusion constant D predicted by 
the model introduced in this paper was checked numerically. All numerical 
computations are related to a simple square lattice of Yukawa scatterers 
defined in Section 2. After introduction in Section 3 of the Jacobi metric g~. 
in configuration space and some operations for compactifying and com- 
pleting the phase space, the problem of classical motion in a crystal is 
translated into the problem of finding a geodesic flow on closed (i.e., com- 
pact and without boundary) Riemannian manifolds of negative curvature. 
By this reformulation of the problem I also succeed in calculating a threshold 
h for diffusion. In Section 4 the diffusion constant D(E) is defined. Then I 
describe the numerical method for calculating D(E). A critical discussion of 
the method of integrating such long orbits of an unstable flow follows. 
Then the model introduced in Section 5 is compared with the Sinai billiard 
and the model of an egg-carton-like potential used by Geisel et al. ~5~ 

In the following I call a path in configuration space a trajectory, 
whereas I call a path in phase space an orbit. 

2. D E F I N I T I O N S  

Let the lattice ~ be generated by the linear independent vectors 
U 1 , I)2~R 2, 

Ga := {kvl +lv2 [ (k, l ) ~ Z  2} ( l)  

Let 5 : =  R 2 be the s176 discrete set (i.e., every translation with 
respect to v ~ s is onto on the set 5:) of all positions of the nuclei. Now 
the punctured plane M; := Rz\5:  is the configuration space. Consider the 
classical motion of a pointlike particle (the electron) of mass normalized to 
one in a s Coulomb potential V. 

D e f i n i t i o n .  We call a potential V an s Coulomb potential 
(or sometimes briefly a Coulomb potential) if it satisfies three conditions: 

(a) V is ~'-periodic. 

(b) Near a singularity s ~ 5 p the potential is asymptotically Coulombic, 
i , e ,~  

V ( q - s ) ~  - z  [q -s[ - l ,  q~M~ 

where z > 0 is the charge of the nucleus situated as s. 

(c) Elsewhere V is smooth. 

(2) 
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For example, the class of attracting Yukawa potentials and specific 
- 1/r potentials of finite ranges ~s~ meet these conditions. 

The motion is described by the Hamilton function H i , which is 
defined on the cotangent bundle T*M~ of the punctured plane M~: 

H~(p, q):=-~+ V(q), (p, q)~ T*M~ (3) 

Observe that the motion in the crystal is determined by the motion in a 
fundamental domain. After identification of opposite sides this domain 
becomes the punctured torus M~_ :=MI/50. On the cotangent bundle 
T*M2 we have the Hamiltonian Hi:  

p2 
H~_(p, q):=y+ V(q), (p, q)~ T'M; (4) 

Remark. For the concrete numerical computation of the diffusion 
constant D (defined in Section 4) I have used a simple square lattice 50", 
where vj := (1 ,0 )  and vz := (0, 1) in Euclidean coordinates. Furthermore, 
every cell contains one nucleus (Yukawa scatterer): ~ = 5 ~ The field of 
the nuclei gives rise to the potential V(q), consisting of Yukawa potentials 
VV(q) :=(1/]q[)e-M; q~M'l. We have 

V(q):= ~ VV(q-s), qeM[ (5) 
s E ,<~" 

Because of the exponential terms the sum V(q) and all its derivatives 
converge absolutely. 

Of course the potential V v is a special representative in the class of 
attracting Yukawa potentials. 

3. J A C O B I  M E T R I C  A N D  N E G A T I V E  C U R V A T U R E  

For E >  max(0, Vm,.,), Vmax := supu~M / V(q), the Jacobi metric g~ on 
MI is defined by 

g'L,(q):=(1-V(ff))g'(q), claM, 

where g' is the Euclidean metric on MI and E is the energy of the electron. 
So the Jacobian metric g~ is conformal w.r.t, the Euclidean metric g' (see, 
for example, Abraham and Marsden, ~1 Chapter3.7). Up to a time 
reparametrization any trajectory in (M;,  g') that solves the Hamilton 
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differential equations is a geodesic in (M~, g~:) and vice versa. So we may 
as well examine the geodesic motion in (M~, g~.-). Whereas the punctured 
plane (Mr, g ')  is flat, the Gaussian curvature Kjr of (M~, g~r) is given by 

[1 - V(q)/E] d V(q)/E + IVV(q)I2/E 2 
K'E(q) := 211 -- V(q)/E] 3 (6) 

with Euclidean gradient V and Laplacian d. It is revealing to discuss (6) 
for the specific case of the lattice of Yukawa potentials (5). Then the 
Laplacian is given by 

+ l~_q~ + ~ )  VV(q - s )  

and d V(q)< 0. For positive energy E > 0 the only negative contribution to 
the curvature (6) comes from the term d V(q). Now it should be clear that, 
given the smoothness of the periodic potential [condition (c)] outside of 
small circular neighborhoods of the singularities, one can find a value E >  0 
so that the term IVV(q)/EI 2 is absolutely dominated by the term dV(q)/E 
because of the square exponent in the first term. Therefore K'E(q) is 
negative outside of these neighborhoods for high enough energy E. 
Furthermore, one observes that for q ~ s the Yukawa potential behaves 
asymptotically Coulombic [corresponding to condition l(a)] .  But for a 
simple Coulomb potential VC(q) := - I /[q-sr  of only one nucleus (at s) 
the curvature 

K'e(q) = 2E(lq - s] + l/E) 3 < 0 

is smaller than zero for positive energy E and q :~ s. The absolute value of 
K'E(q) even increases as q ~ s. These arguments motivate the assumption 
that there exists a threshold h > 0 so that for all energies E >/h the curvature 
K'e(q) <0.  In fact the existence ofh  was proved in ref. 8 for Coulomb poten- 
tials of finite ranges and Coulomb potentials of Yukawa type. In Appendix D 
of ref. 1 1, I computed analytically h = 5.17 as the threshold for the potential 
(5) of the simple square lattice consisting of Yukawa scatterers. 

It is obvious that a small perturbation of the potential does not 
destroy the property of negative curvature, because it is an open property 
defined by an inequality. Furthermore, it has been shown (71 that the set of 
potentials leading to strictly negative curvature K'e(q) is a convex set. This 
means that, given two potentials V ~ V' for which K'E(q) becomes strictly 
negative for all energies E exceeding some threshold h > 0, then we have 
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immediately a class of potentials V' : = t .  V 1 + ( l - t ) .  V ~ 0~<t~< 1, for 
which K~ < 0 holds true. 

On the other hand, the negative curvature condition is obviously 
violated if z] V(q) > 0 for any point q ~ M~. 

Geodesic flows on closed Riemannian manifolds are the standard 
examples for mixing behavior. (M;,g'E) has negative curvature, but is 
neither compact nor geodesically complete. The problem of completion and 
compactification was solved in ref. 8. There Knauf proved that the motion 
in the plane (M[, g~) obeys a diffusion law. Before defining the diffusion 
constant D one needs a complete flow ~, on phase space. The regulariza- 
tion scheme used here differs from that used in ref. 8, but is similar to the 
method presented in Chapter 2 of ref. 7. Notice that the motion in the 
punctured plane MI is not complete. To see this, look at a particle moving 
toward the singularity s (for example, parallel to a symmetry axis of the 
crystal as in Fig. 1). Such a trajectory leads to s in finite time. One obtains 
a complete flow by continuing the motion by backward scattering of those 
particles (as in Fig. 1) which are on a collision trajectory, i.e., one simply 
reflects the trajectory at the scattering center s E 5C 

Consider now all trajectories (of fixed positive energy E) intersecting 
a small circular neighborhood Us centered at s~SC They may be 
parametrized by two numbers: The first number is the angular momentum 
L of the corresponding particle w.r.t, the nucleus at s, measured at the 
pericenter. The second number is the angle q~ enclosed by any arbitrary 
fixed direction and the axis connecting the pericenter and the singularity s. 
[One may choose (L,~b, E, t) as coordinates in the Kepler problem. 
Consequently all hyperbolas as solutions of the unbounded (E = const > 0) 
Kepler problem may be parametrized by L and ~.] This set of trajectories 
is even a manifold. Call it r 

Remark. Every collision trajectory may be considered as a limit of 
trajectories of identical angle ~b and decreasing angular momentum L. So 
the angle ~b is well defined for collision trajectories, too. 

Fig. 1. 
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Collision trajectories are characterized by the condition L = 0. So they 
are a submanifold of codimension one in the manifold (9(Us) and they are 
therefore of measure zero in the manifold (_9(U~). Consequently all collision 
trajectories are completely described by their direction ~b and their energy 
E. So it is clear that one obtains a topological completion P, of phase 
space T*M~ by adding one cylinder S ~ x R (direction, energy) per 
singularity s E 5,' of the punctured plane M;.  The completion P2 of T'M;_ 
is analogous. So let 

P , : = T * M , w ( U  .,, 

Pz:=T*M;-w( U S ' x R )  
x s E , ~ ' / ' - P  

be these completions. The proof of Proposition 2.3 in Klein and Knauf ~71 
implies that P~ and P_, are not only topological manifolds. (Pl,  wj, H, )  
and (P2, o)2, H2) are unique smooth extensions of the Hamilton systems 
(T*M~, dp ^ dq, H;) and (T'M;_, dp ^ dq, H2), respectively. In particular, 
0)i[T.M,,=dp ^ dq and H'=H~Ir.M;, i=  1, 2. Both P~ and P2 are smooth 
four-dimensional manifolds and every E >  Vm, , is a regular value of the 
smooth Hamiltonians H~ and H2. So the energy shells s 
i = 1, 2, are smooth three-dimensional manifolds (Regular Value Theorem). 
Furthermore, the shell s is compact and the flow r on Z "2,.- generated by 
H 2 is mixing, Anosov, and Bernoulli for all E>~h. ~ 

4. D E F I N I T I O N  OF THE D I F F U S I O N  C O N S T A N T  D(E) 

Notice that the Liouville measure /~ on P~ splits into two factors 
[depending on the phase point (p, q )e  P~ ], let PE be the factor acting on 
the submanifold Z '  e of P~, and let vE be a probability measure which is 
absolutely continuous w.r.t. I~E (VE'~FLE). Then we define the diffusion 
constant 

(Iq(T, (Po, q o ) ) -  qol-' ),.~- 
D(E) := lim (7) 

r ' - ~  T 

The expectation value <-- ),.,: is taken w.r.t, the probability measure vE. Let 
n: P~ ~ Pz be the canonical projection. Because vE,~ ~LL-, also vEon -~ ~ll~. 
holds true, where/t~.- is the factor of the Liouville measure gl 2 on P2 acting 
on X 2 

E "  

By the definition (7) it is clear that if D(E) exists, then it is non- 
negative, because the time T is positive and the numerator is nonnegative. 
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We call the motion in the crystal diffusive if a finite and positive limit D(E) 
exists. In ref. 8 the following was proved for attracting Yukawa potentials 
and specific potentials of finite ranges: 

There exists a threshold h so that the motion is diffusive for all 
energies E >/h. 

Of course the value of the threshold h depends on the lattice 
defined in (1) and on the potential V(q). In the case of the attracting 
Yukawa potentials the existence of h does not depend on the lattice s and 
the representative V v of the class of attracting Yukawa potentials. 

The Coulomb potentials to which the proof in ref. 8 relates lead (for 
E>~h) to negative curvature K'E(q) of the configuration spaces (MI, g)r). 
Then they give rise to a (complete) geodesic flow which is Anosov and 
Bernoulli and finally they lead to diffusion. So one can understand that the 
threshold h = 5.17 guaranteeing negative curvature K'e(q) for the potential 
(5) also guarantees diffusion in the field of the potential (5), i.e., diffusion 
in the lattice of Yukawa scatterers. 

The three conditions of absolute continuity veorc ,~ll~., the com- 
pactness of Z~., and the strong mixing property of the measure-preserving 
flow q~ guarantee (by Theorem 6.12 of ref. 13) the independence of the dif- 
fusion constant D(E) of the choice of the absolutely continuous probability 
measure ve on the energy shell Z "~ E" 

In the case of the special Yukawa potential (5), D(E) is approximated 
by numerical computation of finite-time trajectories, 

1 N Iq(T,(pg, q~))-q~l 2 
o2p.(e) :=N E,= r 

where the energy E > h  is fixed, N is the number of trajectories, and 
(p~, q~) is the initial value of the ith trajectory. The values of q~ and 
Po/IPol are chosen randomly w.r.t, the uniform distributions on M; and S 1. 
Here IP~I := { 2 [ E -  V(q~o)]} m. The running time T was chosen sufficiently 
large, that is, the orbit was integrated over time steps r, 2r,..., 15r = T and 
T was considered to be large enough if the values D~pp(E) oscillated only 
in a small interval. 

It might seem to be problematic to compute long orbits of an unstable 
flow q~, of Anosov type, because the used Runge-Kutta method of fourth 
order entails small errors and these errors preclude approximating a true 
orbit associated to the initial value (p~, q~) by a computed orbit (of course 
in a bounded integration time). Because of the exponential instability, the 
error increases exponentially, too. But here the Shadowing Lemma of 
Bowen ~2~ comes into play (which is essentially based on the Anosov 
property, too). It deals with discrete Anosov systems and says that for an 

822/78/5-6-26 
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Fig. 2. 
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In(E) 
Dependence of the diffusion constant D on the energy E. 

infinite sequence of phase space points {x~}i~ z with d(~(xi), x~+ 1 ) < a  (the 
"a-orbit"; a computed orbit is such a sequence, although a finite one) one 
can find a true orbit {Y~}~z ("fl-orbit") with d(q~(y), x i ) < f l  for all i e  Z. 
Here d is the distance on s induced by the metric g~r. Therefore, a com- E 
puted orbit is as good as a true orbit for examining the statistical behavior 
of the phase space flow. 

The double logarithmic plot of the function D(E) (Fig. 2) indicates a 
polynomial dependence of D on E in the limit of large energy E. A two- 
parameter X 2 confidence and fitting test statistically confirms the assump- 
tion of polynomial dependence. For example, the three points associated to 
the highest energies E~  {100, 200, 500} lie on a straight line g with prob- 
ability of 71%. The slope of that fitted line is m = 1.45. One has to compare 
this numerical result with that of the simple model presented below, which 
predicts that D(E),,,const.E 3/2 for large E and a suitable positive con- 
stant. Up to numerical fluctuations Fig. 2 shows a convex function. The 
slope increases, but seems to be asymptotically constant. So the slope 3/2 
is not only confirmed by the small difference from the number 1.45, but by 
the form of the graph D(E) as a whole, too. 

5. A M O D E L  FOR THE D E P E N D E N C E  OF THE D I F F U S I O N  
C O N S T A N T  D ON THE ENERGY E 

The intention of this section is to give an idea about the structure 
which generates the exponent 3/2 in the diffusion law. 



Classical Motion in Two-Dimensional  Crystals 1599 

This is no proof of the diffusion law. The existence of a finite and 
positive constant D(E)  was proved in ref. 8, but not the diffusion law (7) 
itself (the proof is not yet finished). 

The increase of the diffusion constant D(E)  with the energy E follows 
from a rise of the mean free path length g(E) and a faster covering of this 
length by the electron. In the development of this model it is fundamental 
to notice that macroscopic scattering of the electron takes place only inside 
of small circles centered at s ~ 5 ~ whose radius scales with filE, fl = const 
(see Lemma 5.5 of ref. 7 or Chapter 2.6 of ref. 11 ). 

The meaning of the term macroscopic scattering is that the change of 
the direction of the electron after passing through a circular neighborhood 
of a nucleus exceeds a given angle 6. This observation motivates the 
examination of the energy dependence of the mean path length g(E). 

For that purpose consider now instead of a typical trajectory of the 
electronic odyssey in the ~-per iodic  crystal a straight line f in a plane of 
randomly spread discs of the small radius r, r ~ 1/E. Suppose there are n 
singularities in the fundamental domain, whose area we normalize to 1. 
Then an area d of size A 2 will contain .4 2. n singularities in the mean, and 
the discs around the singularities will cover an area of A 2 .n .  nr 2..~ 1/E 2. 
The proability that a point in ~r lies on a disc is proportional to 1/E 2. 
Consequently, the probability that a point of the line f is also contained 
in a disc is proportional to 1/E (this means that there is a good chance that 
a line of length E is intersected at least once by a disc). Therefore a segment 
of length .4 of the straight line f will be intersected (in the mean) by c. A l E  
discs and the mean distance between two intersections is of the order E/c, 
where c is constant, because c. A / E .  E/c = A. So it follows that 

g(E) ~ c - ' .  E (8) 

and the approximation becomes better with large E, since then one may 
neglect the place covered by the discs on f 

The justification of this derivation of g(E) may be this: What we used 
to call a periodic lattice does in a sense not look periodic if one takes the 
perspective of an electron in that plane, since the electron moves in general 
not on a straight line (the goedesic in the Euclidean metric), but on the 
geodesics w.r.t, the Jacobian metric g~.. This implies that equidistant points 
(w.r.t. the Euclidean metric) in the crystal have in general different distances 
w.r.t, the Jacobian metric g~ [for a more physical deduction of g(E) see 
Chapter 2.6 of ref. 11 ]. 

With a dot symbolizing the standard scalar product in R 2, write 
again (7), 
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l i E  

= lim - - / f  0(s) .  (l(r) ds dr 
T~ ~ T \Jo -J,E 

= lim 4(s) "4(s+ t) dt ds 
T ~ ~ - T  - T I l l :  

with - T ~ <  t := r - s  ~< T. For  large T the inner integral should not depend 
on s (so the outer integration will only produce the factor T). Let s = 0. We 
have 

C ) D(E) ~ )irn 4(0). gl(t) dt 
I l k -  

B y  assumption of symmetry  of the integral (for large T) we get a G r e e n -  
Kubo  formula (ml' 

D(E)~  lim 2 ( ; r 4 ( O ) . 4 ( t ) d t ~  
T ~ caC I ,ttl:; 

( ; ) = lira 2 { 2 [ E -  V(qo)]} ~/'- cosq~(t) 1O(t)l dt 
T ~ ~s P E 

where ~(t) is the angle between the two vectors 4(0) and 4(l). Let P be the 
mean w.r.t, the measure dq~ ^ dq2 of V(q). Now divide the interval [0, T ]  
into the parts [0, t ]  and [ t ,  T] ,  where t is the time of the first macroscopic  
scattering of the electron. That  is, during the time t the angle 4,(t) is 
bounded by a small, positive 6. So the time z depends, besides the initial 
values q(0), 4(0), on 6: 

z(a; (q(O), 4(0)) := s u p { r e  R + I I~(r, q(0), 4(0))1 < 6 Vte  [0, f ]  } 

Let 6 ~ 1; then in particular cos q~(t)~ 1. 

Roroark. Exceptional initial values lead to unbounded r. Consider as 
an example an electron moving on a symmetry  axis of the potential  
(Fig. 3). 

So one may write 

I; ) + cos ~b(t)14(t)l dt 
(& q(O). O(O) ) I ~  
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D 

Fig. 3. 

For simplicity we assume that cos ~b(t) and I(l(t)] are not correlated and 
that after collision time r the values of cos ~b(t) are uniformly distributed. 
Under this assumption the second integral will disappear in the mean. 
The first integral is exactly the mean free  path length ~(E). So D(E)~-  
[ 2 ( E -  9) ]  1/2. ~(E), and with (8) [~(E) ~ c -  ~ �9 E]  it follows finally that for 
large E 

D(E) ~ const- E 3/~ (9) 

6. C O M P A R I S O N  W I T H  S I M I L A R  M O D E L S  

The deduction of the diffusion law (9) uses the existence of the mean 
free path length g(E). Its existence is not trivial, but it is possible to show 
it. 

In contrast to this model (classical motion in a Coulomb crystal), the 
mean free path length does not exist in the mode of the two-dimensional 
periodic Lorentz gas ~3"~2~ of infinite horizon, so it is not surprising that it is 
not diffusive. The well-known Lorentz gas consists of a particle freely 
moving in the plane between a discrete set of disjoint discs. This discrete set 
is invariant under a lattice ~ .  Whereas the velocity stays constant between 
collisions, the particle is reflected elstically from the boundaries of the scat- 
terers like a billiard ball. The particle has infinite horizon if there exists a 
trajectory which passes through the crystal without touching any scatterer. 
An important property of this model is the following: Fixing the centers of 
the discs, the horizon cannot be finite if the diameters of the discs are too 
small. This is the case if there is, for example, only one disc per unit cell 
which touches no side of the cell. The nonexistence of the mean free path 
length may be derived from the existence of trajectories staying for a suf- 
ficiently long time in "channels" formed by parallel unscattered trajectories 
(channeling behavior; see Chapter 2.6 of ref. 11). 

It might be surprising that the described Lorentz gas is qualitatively 
different even from the high-energy classical motion in the Coulomb crystal, 
because the Euclidean curvature of a trajectory in the Coulomb crystal 



1602 Nobbe 

(a) 

Fig. 4. (a) Energy E = 80, time T= 270, sizes 481 x 481; (b) energy E= 160, time T= 360, 
sizes 961 x 961. 

decreases with the energy E. Of  course, if one looks at segments of  fixed 
length, the segments become more and more straight with increasing 
energy E. But consider at Fig. 4a) and 4b, where trajectories corresponding 
to different energies are shown. Notice that the size of  the considered part 
of the crystal is enlarged proport ional  to E (corresponding to the energy 
dependence of  g). One observes that the trajectory even of  a particle of  high 
energy does not look like the trajectory of a billiard ball, but is curved. 
Without entering any circle of macroscopic scattering the electron is able 
to change its direction by sufficiently many "weak" scatterings. 

7. S U M M A R Y  

The Euclidean curvature decreases with E, but the total Euclidean 

curvature of a trajectory between two consecutive events of  macroscopic 
scattering does not vanish in general, because the mean free path length 
increases in E. (The total curvature of  a path is the curvature integrated 
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(b) 

Fig. 4. (Conthmed) 

over this path, i.e., the "historically" measured change of the direction of 
the tangent.) This nonvanishing of the total curvature generated by "weak" 
scattering is responsible for diffusion. 

Diffusion takes place independently of the arrangement of the scat- 
terers in a crystal of Yukawa scatterers. On the other hand, the finiteness 
of the horizon is essential in the model of the Lorentz gas. The Lorentz gas 
of finite horizon is diffusive. One may compare the diffusion constant a 
defined in that model (for example, see ref. 4) with the diffusion constant 
D defined in (7). One way to take the dependence of diffusion processes on 
the energy into account in the model of the Lorentz gas is to increase the 
velocity of the particle. But the law of reflection does not depend on the 
energy (because the angles of incidence do not). So the particle covers its 
trajectory with a speed proprotional to the square root of the energy (apart 
from the moments of reflection, the particle sees no potential and it has 
only kinetic energy). The length covered in a fixed interval of time will be 
proportional to the square root of the energy, too. Consequently the diffu- 
sion constant tr(E) would increase like a ~ const �9 E ~/2. I think this diffusion 
law is not yet in sharp contrast to the law D ( E ) ~ c o n s t  . E  3/2. Recall that 
the faster covering of the mean free path length g(E) in the Coulomb model 
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gives asymptotically the factor E 1/2, too. So it seems to be more natural to 
compare the Coulomb model with the Lorentz gas of finite horizon with 
scattering discs whose diameters scale with E -~ corresponding to the 
scaling of the circles of macroscopic scattering in the Coulomb case. The 
diffusion law one would obtain by that reflection of the Lorentz model 
would have to be compared with the E 3/2 law (7). Then the main quali- 
tative difference would be the following: With increasing energy E, the 
scattering discs become smaller than the critical diameter of finiteness of 
the horizon. Diffusion no longer takes place for high energy. 

A further difference between the two models is that phase space is in 
fact smooth for the Coulomb crystal, whereas any hard-core potential like 
the Lorentz gas shows edges in phase space. 

Another way of modeling the classical motion in a crystal is to con- 
sider a real analytic (and not only differentiable) periodic potential. But 
KAM theory predicts, apart from the fact that the motion becomes ballistic 
for high energy, the existence of elliptical orbits (on condition that the 
particle is able to leave the unit cell) already for low energies. So the set 
of orbits channeling "nearly unscattered" through the crystal has positive 
measure. The motion is therefore not diffusive. Geisel et  al. examined 1 I f  

noise in such egg-carton-like potentials and also looked numerically for 
diffusive behavior. However, they neglected exactly the "channeling orbits." 

L a s t  R e m a r k .  No answer without questions! Remember that the 
motion of the quantum mechanical wave packet is always ballistic (Bloch 
theorem): 

/ q 2 ( t ) \  
l i r a  \ - -~-- ;OM = D o s  > 0 r (q2)QM ~ DQM" t 2 

So it is qualitatively faster than the classical particle because of 

( q 2 ) c  L ~ E 3/2 . t 

If a quantum particle behaves more and more classically in the high-energy 
range, it has also to get slower, This question arises in ref. 9, where Knauf 
treats the quantum case of periodic Coulombic potentials, 
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